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ABSTRACT
Given the rich real-life applications of network mining as well
as the surge of representation learning in recent years, network
embedding has become the focal point of increasing research in-
terests in both academic and industrial domains. Nevertheless, the
complete temporal formation process of networks characterized by
sequential interactive events between nodes has yet seldom been
modeled in the existing studies, which calls for further research on
the so-called temporal network embedding problem. In light of this,
in this paper, we introduce the concept of neighborhood formation
sequence to describe the evolution of a node, where temporal exci-
tation effects exist between neighbors in the sequence, and thus we
propose a Hawkes process based Temporal Network Embedding
(HTNE) method. HTNE well integrates the Hawkes process into
network embedding so as to capture the influence of historical
neighbors on the current neighbors. In particular, the interactions
of low-dimensional vectors are fed into the Hawkes process as base
rate and temporal influence, respectively. In addition, attention
mechanism is also integrated into HTNE to better determine the
influence of historical neighbors on current neighbors of a node. Ex-
periments on three large-scale real-life networks demonstrate that
the embeddings learned from the proposed HTNE model achieve
better performance than state-of-the-art methods in various tasks
including node classification, link prediction, and embedding visu-
alization. In particular, temporal recommendation based on arrival
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rate inferred from node embeddings shows excellent predictive
power of the proposed model.

CCS CONCEPTS
• Information systems → Data mining; Network data mod-
els; • Computing methodologies → Dimensionality reduc-
tion and manifold learning;

KEYWORDS
Temporal Network; Network Embedding; Learning Representation;
Hawkes Process

ACM Reference Format:
Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu, and Junjie Wu.
2018. Embedding Temporal Network via Neighborhood Formation. In KDD
’18: The 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, August 19–23, 2018, London, United Kingdom. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3219819.3220054

1 INTRODUCTION
Network embedding has become a focal point of study in recent
years, aiming at representing large-scale networks by mapping
nodes to low-dimensional space [6, 9, 10, 20]. It provides an efficient
way to uncover the network structure and perform various network
mining tasks such as node classification [20], link prediction [9],
community detection [5], etc. Recent work on network embedding
methods [9, 20, 22] generally focuses on static network structure by
considering various contextual information, e.g., the neighbors of a
node. One non-trivial but often-overlooked assumption underlying
these methods is that the neighbors of a node are unordered; in
other words, the link formation history is omitted.

In reality, however, a network is formed by adding nodes and
edges sequentially, which indeed should be regarded as a dynamic
process driven by interactive events between a node and its neigh-
bors. As a result, the neighborhood of a node is not formed si-
multaneously and the observed snapshot network structure is the
accumulation of neighborhood in certain time periods. For example,
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Figure 1: Toy example for temporal network and neighbor-
hood formation sequence.

Figure 1a shows the ego network of one author: node 1, and his/her
neighbors i.e., nodes 2 to 6. Taking a snapshot perspective on the
network structure, we only observe the up-to-date co-authorship,
whereas how and when the nodes are connected remains unknown.
As a matter of fact, in most real networks, edges between nodes
are generally established by sequential events, which constitute
the so-called temporal network [12]. For example, the co-author
network is driven by co-authored papers with clear timestamps.
As shown in Figure 1a, we see each edge is annotated with several
papers co-authored between node 1 and its neighbors in chronolog-
ical order. The ego temporal network can thus be unfolded into a
node-specific neighbor sequence according to the timing of events,
which is defined as Neighborhood Formation Sequence and shown
in Figure 1b.

Neighborhood formation sequences indeed contain much richer
information than the static network snapshot in representing nodes.
We can see from Figure 1b that neighbors might appear repeatedly
in the sequence due to the repeated co-authorship between the
authors, which could provide more semantic meanings than one
single edge. We can also observe the dynamic changes of neighbors
more explicitly in the sequence that node 1 is more likely to co-
author with nodes 2 and 3 in the earlier years while shifts to co-
author with 5, 6, and 7 recently. Moreover, the events of the target
neighbors in the sequence are correlated with each other, or in other
words, historical events can influence the current neighborhood
formation. For example, we assume node 1 is a Ph.D. student in the
earlier years, and hence most of his/her papers are co-authored with
his/her advisor, e.g., node 2. Node 3 might be an academic friend of
node 2, and therefore the co-authorship with node 2 can excite some

other neighbor arrival events with node 3. Assume node 1 becomes
a professor after graduation, then he/she can develop some new
co-authorships, and the influence from the advisor might vanish
and the newly connected co-authors (e.g., node 5) might further
excite other co-authors (e.g., node 6), as shown in Figure 1c.

Therefore, how nodes connect to their neighbors sequentially
can reveal the dynamic changes, and should be exploited to better
represent the network. Though several recent dynamic network
embedding methods [29, 30] have attempted to model the dynamics
by segmenting timelines into fixed time windows, the learned em-
beddings are still representations in particular time periods without
taking the dynamic process into account. To directly model neigh-
borhood formation sequences, therefore, remains a great challenge.

To tackle the above challenge, in this paper, we propose a Hawkes
process based Temporal Network Embedding (HTNE)method. Specif-
ically, we firstly induce the neighborhood formation sequence from
the network structure driven by sequential events. Since Hawkes
process [11] well captures the exciting effects between sequential
events, particularly the influence of history on the current events,
we adapt it for modeling the neighborhood formation process. Then,
in order to derive the node embeddings from the Hawkes process,
low-dimensional vectors are fed into the Hawkes process by map-
ping the pairwise vectors to the base rate and the influence from the
history, respectively. Moreover, the influence of historical neighbors
on the current neighbor formation can vary with different nodes,
and thus we further adopt attention mechanism to enhance the
expressiveness of the influence from the neighborhood formation
history on the current neighbor formation event.

In order to deal with large-scale networks, our HTNE model
is solved by optimizing the likelihood of neighborhood formation
sequences rather than the conditional intensity function. We con-
duct extensive experiments on three large-scale real-life temporal
networks to train the node embeddings and apply them for several
interesting tasks including node classification, link prediction and
visualization. In particular, we design a temporal recommendation
experiment by utilizing the conditional intensity function inferred
from neighborhood formation sequence. The experimental results
all show significant improvements over some state-of-the-art base-
line methods.

2 PRELIMINARIES
2.1 Neighborhood Formation Sequence
Network formation can be viewed as a dynamic process of adding
nodes and edges, which encodes the underlying mechanisms of
how nodes connect with each other and evolve in the network.
The static network snapshot is indeed accumulation of historical
formation process and only represents the structure at one par-
ticular time period. Therefore, it is more desirable to consider the
detail historical network formation process in order to recover the
network structure and represent the network. However, most prior
studies in network embedding often focus on network snapshot
without resorting to how the network is formed, and most network
embedding approaches are based solely on the static neighborhood
in representing a node [9, 20, 22].

Traditionally, dynamic network attempts to capture the evolving
network structures based on predefined time windows [29, 30],
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which however, can only represent the snapshots in different time
periods and cannot reveal the complete temporal process of net-
work formation. Therefore in this paper, we trace back the network
formation process by tracking the neighborhood formation of each
node. As a matter of fact, edges are generally formed by sequen-
tial interactive events between pairwise nodes. For example, in
co-author network, the relationship between authors are formed
due to their co-authorship on a paper at certain time. In one net-
work snapshot, the relationship between any two authors can only
be represented by one single edge, with the times of papers ever
co-authored as weight. Driven by the sequential interactive events
on each edge, we can formally define the temporal network.

Definition 2.1. (Temporal Network.) Temporal network is a
network with edges annotated by chronological interactive events
between nodes, which can be denoted as G =< V, E;A >, where
V denotes the set of nodes, E denotes the set of edges and A
denotes the set of events. Each edge (x ,y) ∈ E between nodes x
and y is annotated by chronological events , i.e., ax,y = {a1 →
a2 → · · · } ⊂ A, where ai denotes an event with timestamp ti .

Given the temporal network, the evolution of co-authorship
can be more explicitly depicted, which can also provide clues for
predicting future co-authors of a node. Therefore, the adjacent
neighbors of a node in the network can be organized as a sequence
according to the ascending time of the interactive events with the
neighbors, representing the neighborhood formation process. Then,
we can formally define the neighborhood formation sequence in
brief as follows.

Definition 2.2. (Neighborhood Formation Sequence.) Given
a source node in temporal network x ∈ V , the neighborhood of
the node is N (x ) = {yi |i = 1, 2, · · · }, and the edge between the
node and each neighbor is annotated with chronological inter-
active events ax,yi . Mathematically, the neighborhood formation
sequence can be represented as a series of target neighbor arrival
events, i.e., {x : (y1, t1) → (y2, t2) → · · · → (yn , tn )}, with each
tuple representing an event that node yi is formed as a neighbor of
node x at time ti .

It is worth mentioning that the neighborhood of a node usually
indicates a non-repeated node set. While according to the definition
of Neighborhood Formation Sequence, each neighbor can appear
repeatedly in the sequence to represent multiple interactions with
the source node. With the defined sequence, the changes of node
connections over time can be manifested explicitly, such that the
hidden structure of nodes in network can be inferred from the
sequence. Take the co-author network as an example again, the
neighborhood formation sequence of a node shows its changes of
co-authors, and we can help infer the authors’ research interests.

Moreover, the events in neighborhood formation sequence are
not independent because the historical neighbor formation events
can influence the current neighbor formation. For instance, a re-
searcher may focus on one particular field such as data mining, and
thus the co-authors are mainly data mining researchers. But when
deep learning has become a focal point of study in recent years, we
may gradually observe some AI researchers in his/her co-authors
sequences, and can predict from recent neighborhood sequence
that the author may shift the research interests to AI and the future

co-authors may have more AI people. Therefore in this paper, we
aim to take the dynamic neighborhood formation sequence into
consideration, in order to learn the representations of the nodes.

2.2 Problem Definition
Given a large-scale temporal network G =< V, E;A >, the neigh-
bors and the corresponding chronological events of each node
x ∈ V can be induced into a neighborhood formation sequenceHx
by tracking all the timestamped events in which x interacts with
its neighbors. Then, temporal network embedding aims to learning
a D-dimensional vector to represent each node, which is indeed
learning a mapping function ϕ : V → RD , where D ≪ |V |.

Different from recent network embedding methods where only
the static set of neighbors are considered, we tackle the embedding
problem by firstly modeling the neighborhood formation sequence
and the excitation effects between the neighbors.

3 METHODOLOGY
3.1 Hawkes Process
Point process models the discrete sequential events by assuming
that historical events before time t can influence the occurrence
of the current event. Conditional intensity function characterizes
the arrival rate of sequential events, which can be defined as the
number of events occurring in a small time window [t , t +∆t ) given
all the historical eventsH (t ).

λ(t |H (t )) = lim
∆t→0

E[N (t + ∆t ) |Ht ]
∆t

. (1)

Hawkes process is a typical temporal point process, with the
conditional intensity function defined as follows,

λ(t ) = µ (t ) +

∫ t

−∞

κ (t − s )dN (s ), (2)

where µ (t ) is the base intensity of a particular event, showing the
spontaneous event arrival rate at time t ; κ (·) is a kernel function
that models the time decay effect of past history on the current
event, which is usually in the form of an exponential function.

The conditional intensity function of Hawkes process shows
that the occurrence of current event does not only depend on the
event of last time step, but is also influenced by the historical events
with time decay effect. Such property is desirable for modeling the
neighborhood formation sequences, because the current neighbor
formation can be influenced with higher intensity by the more
recent events, while the events occurring in longer history would
contribute less to the current occurrence of target neighbors.

In order to handle different types of arrival events, Hawkes pro-
cess can be extended to multivariate case where the conditional
intensity function is designed for each event type as one dimen-
sion [14]. The excitation effects are indeed a sum over all the histor-
ical events with different types, captured by an excitation rate αd,d ′
between dimension d and d ′. Next, we introduce how to model the
neighborhood formation with multivariate Hawkes process.

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2859 



3.2 Modeling Neighborhood Formation
Sequence via Multivariate Hawkes Process

As discussed previously, when we regard each node as a source,
a sequence of target neighbors driven by interactive events can
be entailed. The neighborhood formation sequence of a node is
indeed a counting process, with the current target node influenced
by the historical events. Thus, it is naturally appealing to apply
Hawkes process to model the neighborhood formation sequence of
the source node x , and the conditional intensity function for the
arrival event of target y in the sequence of x can be formulated as,

λ̃y |x (t ) = µx,y +
∑
th<t

αh,yκ (t − th ), (3)

where µx,y represents the base rate of the event to form an edge
between x and y, while h is the historical target node in the neigh-
borhood formation sequence of node x prior to time t . αh,y repre-
sents the degree to which a historical neighbor h excites the current
neighbor y, and the kernel function κ (·) denotes the time decay
effect which can be written in the form of an exponential function,

κ (t − th ) = exp(−δs (t − th )). (4)

To note that the discount rate δ is a source dependent parameter,
which illustrates the fact that for each source node, the histori-
cal neighbor can influence the current neighbor formation with
different intensity.

By following the intensity function in Equation (3), the neigh-
borhood formation sequence of each source node can be modeled.
Next, in order to learn the D-dimensional representations for the
nodes in the network, each node is assumed to be represented by a
D-dimensional vector and fed into the intensity function. Specif-
ically, assume that the node embedding of node i is ei , then the
base rate for connecting source x to target y can be mapped from a
function f (·) : RD × RD → R.

Intuitively, the base rate reveals the natural affinity of source
node x with target nodey. Thus, we use negative squared Euclidean
distance as a similarity measure to capture the affinity between the
embeddings of node x and y for brevity, i.e., µx,y = f (ex , ey ) =
−||ex − ey | |2. Similarly, in computing the historical influence on
the current node αh,y , we use the same similarity measure αh,y =
f (eh , ey ) = −||eh − ey | |2.

As the similarity measure we introduced takes negative value, we
apply an exponential function to transfer the conditional intensity
rate to a positive real number, i.e., д : R→ R+, since λy |x (t ) should
take positive value when regarded as a rate per unit time. Then, we
can define the conditional intensity function for the neighbor as:

λy |x (t ) = exp(λ̃y |x (t )). (5)
As will be described later, using the exp(·) as transfer function
brings us convenience to define and optimize the likelihood.

3.3 Attention for Sequence Formation
Considering the conditional intensity function, the influence from
historical events is decomposed as the affinity between the his-
torical nodes with the current target node. Intuitively, the affinity
between the history and the target node should depend on the
source node. For example, some researchers may have relatively

fixed co-authors through time, such that the neighborhood for-
mation sequence remains stable and is more predictable, and the
historical events have larger impacts on the current target node
in this scenario. While some other researchers may change their
co-authors from time to time, as a result they have varied inten-
sity of affinity with different historical co-authors. Therefore, it is
necessary to incorporate such characters of the source nodes in
modeling the distinct excitation effects α , which is not addressed
in previously proposed conditional intensity function.

Following the recent attention based models for neural machine
translation [2], we define the weights between the source node and
its historical nodes using a Softmax unit as follows:

wh,x =
exp(−||ex − eh | |2)∑
h′ exp(−||ex − eh′ | |2)

. (6)

For consistence, we choose negative Euclidean distance function
to score the affinity between the source and history node. Therefore,
the influence from the historical neighbors on the current target
can be re-formulated as,

αh,y = wh,x f (eh , ey ) (7)

3.4 Model Optimization
Bymodeling the neighborhood formation sequences with multivari-
ate Hawkes process, we can infer the current neighbor formation
events from the conditional intensity. Then, given the neighbor-
hood formation sequence of node x before time t , denoted byHs (t ),
the probability of forming connection between x and the target
neighbor y at t can be inferred through the conditional intensity as,

p (y |x ,Hx (t )) =
λy |x (t )∑
y′ λy′ |x (t )

. (8)

Then, the log likelihood of neighborhood formation sequences for
all the nodes in the network can be written as,

logL =
∑
x ∈V

∑
y∈Hx

logp (y |x ,Hx (t )). (9)

Due to the exp(·) transfer function introduced in Equation (5),
p (y |x ,Hx (t )) is actually a Softmax unit applied to λ̃y |x (t ), which
can be optimized approximately via negative sampling [18]. Nega-
tive sampling helps us to avoid the summation over the entire set
of nodes in calculating Equation (8), which costs huge computa-
tions. According to the degree distribution Pn (v ) ∝ dv

3/4, where
dv is the degree for node v , we sample negative nodes which have
not occurred in the neighborhood formation sequence. Then the
objective function of the edge between a source x and a historical
target node y at time t can be computed as follows,

logσ (λ̃y |x (t )) +
K∑
k=1
Evk∼Pn (v )[− logσ (λ̃vk |x (t ))], (10)

where K is the number of negative nodes sampled according to
Pn (v ), σ (x ) = 1/(1 + exp(−x )) is the sigmoid function.

In addition, the length of the neighborhood formulation sequence
influences the computation complexity of λy |x (t ), where nodes
have long historical lengths. Thus, in the model optimization, we
fix the maximum length of history h and only retain the target
nodes in the recent sequence.
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Table 1: Data statistics.

# nodes # static edges # temporal edges # classes
DBLP 28,085 162,451 236,894 10
Yelp 424,450 2,610,143 2,610,143 5
Tmall 577,314 2,992,964 4,807,545 5

We adopt Stochastic Gradient Descent (SGD) to optimize the
objective function in Equation (10). In each iteration, we sample a
mini-batch of edges with timestamps and fixed length of recently
formed neighbors of the source node to update the parameters.

4 EXPERIMENTAL SETUP
We validate the effectiveness of the proposed methods on three
large scale real-world networks. Hereinafter, we use “HTNE-a” to
denote the HTNE with attention. Four state-of-the-art baseline
methods are included for a thorough comparative study.

4.1 Data Sets
We first briefly introduce the three real-world networks used in our
experiments, with data statistics listed in Table 1.

DBLP: We derive a co-author network from DBLP1 of ten re-
search areas (see Table 2). We treat the research areas as labels, and
assume that a researcher belongs to a particular area if over half of
his or her most recent ten papers were published in corresponding
conferences.

Yelp: This dataset is extracted from the Yelp2 Challenge Dataset.
Users and businesses are regarded as nodes, and commenting be-
haviors are taken as edges. Each business is assigned with one or
more categories. We only retain the top five categories during the
experiments, and the businesses with more than one categories are
labeled by the top one category.

Tmall: This dataset is extracted from the sales data of the “Dou-
ble 11” shopping event in 2014 at Tmall.com 3. We take users and
items as nodes, purchases as edges. Each item is assigned with
one category. We only retain the five most frequently purchased
categories during the experiments.

4.2 Baseline Methods
Following are four network embedding methods applied as base-
lines in our experiments.

LINE [22]: This method optimizes node representations by pre-
serving first-order or second-order proximities for a network. In
the comparative study, we employ the second-order proximity to
learn representations.

DeepWalk [20]: This method first applies random walks to gen-
erate sequences of nodes from the network, and then uses it as
input to the Skip-gram model to learn representations.

node2vec [9]: This method extends DeepWalk by developing a
biased random walk procedure to explore neighborhood of a node,
which can strike a balance between local and global properties of a
network.

1http://dblp.uni-trier.de
2https://www.yelp.com
3https://tianchi.aliyun.com/datalab/dataSet.htm?id=5

Table 2: The ten research areas selected from DBLP.

Research Area Conference
Database ICDE, VLDB, SIGMOD
Data Mining KDD, ICDM, SDM, CIKM
Information Retrieval SIGIR
Artificial Intelligence IJCAI, AAAI, ICML, NIPS
Computer Vision CVPR, ICCV
Theory STOC, SODA, COLT
Computational Linguistics ACL, EMNLP, COLING
Computer Networks SIGCOMM, INFOCOM
Operating Systems SOSP, OSDI
Programming Languages POPL

ComE [5]: This method models community embedding, which
can be utilized to optimize the node embeddings by introducing a
community-aware high-order proximity.

4.3 Parameter Settings
For our method, we set the mini-batch size, the learning rate of
the SGD, and the number of negative samples to be 1000, 0.01, 5
respectively. We set the history length as 5, 2 and 2 for DBLP, Yelp
and Tmall respectively. For LINE, we set the number of total edge
samples to be 10 billion, and other parameters are set by default.
For other baseline methods, we apply default parameters except for
the embedding size, which is fixed to be 128 for all the methods.

4.4 Tasks and Evaluation Measures
We first validate the quality of the learned node embeddings from
each model by treating them as features for tasks such as node
classification and link prediction. Then, by performing a customized
temporal recommendation task, we evaluate the conditional in-
tensity function λy |x (t ) (see Equation (5)) inferred from the node
embeddings in our method. We also visualize the node embeddings
by arranging the network layout on a two-dimensional space. Fi-
nally, we perform a parameter sensitivity study. The evaluation
tasks and corresponding measures are described as follows.

Node classification: Given the inferred node embeddings as node
features, we train a classifier and predict the node labels. We use
both Macro-F1 and Micro-F1 as measures.

Link prediction: We aim to determine if there is an edge between
two given nodes based on the absolute difference in positions be-
tween their corresponding embedding vectors. We apply Macro-F1
as the measure.

Temporal Recommendation: Given a test time point t , we first
train the node embeddings on the data in time interval [t ′, t ), then
recommend possible new connections of a source node x at time t .
We apply Precision@k and Recall@k as measures.

5 EXPERIMENTAL RESULTS
5.1 Evaluation of Node Embeddings
As described above, we evaluate the quality of learned representa-
tions by feeding the representations into the tasks including node
classification and link prediction.

Node classification results. We first apply all the methods on
each network to learn its node embeddings, and then train a Logistic
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Table 3: Link prediction results.

DBLP Yelp Tmall
DeepWalk 0.8126 0.7678 0.7745
LINE 0.6350 0.8529 0.8265
node2vec 0.8049 0.7712 0.5901
ComE 0.7921 0.8120 0.6917
HTNE 0.8521 0.8944 0.7834
HTNE-a 0.8608 0.8861 0.7928

Regression classifier with node embeddings as features. We vary the
size of the training set from 10% to 90% and the remaining nodes
as testing. We repeat each classification experiment for ten times
and report the average performance in terms of both Macro-F1 and
Micro-F1 scores. Results on DBLP, Yelp and Tmall are presented in
Table 4, 5 and 6 respectively.

As the classification results show, our methods perform the best
on all the three datasets. Specifically, HTNE-a performs the best on
DBLP and Yelp consistently with all varying sizes of training data, as
measured by both Macro-F1 and Micro-F1. HTNE performs the best
on Tmall with all varying sizes of training data according to Micro-
F1, and performs the best on Tmall when the training size is larger
than 20% as measured by Macro-F1. The stable performances of
our methods against different training sizes indicate the robustness
of our learned node embeddings when served as features for node
classification.

HTNE-a performs better than HTNE on DBLP and Yelp as mea-
sured by Macro-F1 and Micro-F1, which indicates that attention
to history nodes based on the source node could help to learn bet-
ter node embeddings. It is notable that HTNE-a performs slightly
worse than HTNE on Tmall, which we believe is due to the fact
that purchase behaviors of a user in short term may have less sig-
nificant temporal patterns as compared to that in long term. More
results in Figure 4c can serve as evidence for the above discussions,
since when history length is larger than 2, HTNE-a can outperform
HTNE on Tmall.

Link prediction results. Given an edge and its two ends x and
y, we define the edge’s representation as |ex −ey |, where ex and ey
are embeddings of x and y respectively. The above definition works
for any pair of nodes, no matter an edge exists or not between the
nodes, which can be utilized as features for link prediction. On each
dataset, we randomly hold out 10,000 edges as positive ones, and
also choose 10,000 false ones (i.e., two nodes share no link). We
train a Logistic Regression classifier on the constructed datasets, and
list the Macro-F1 results in Table 3.

From the results, we can find our methods perform the best on
DBLP and Yelp, and HTNE-a performs the second best on Tmall.
The above promising results suggest that the node embeddings
learned by our methods can also serve as favorable features for
link prediction. We also notice that LINE performs the best on
Tmall, which might be due to the characteristics of the dataset.
Moreover, LINE performs the best among the baseline methods on
Yelp and Tmall but performs the worst on DBLP, while in contrast,
our methods achieve satisfactory results in all the dataset, showing
that our methods are more robust.

5.2 Evaluation of the Conditional Intensity
Function

The conditional intensity function λy |x (t ) (see Equation(5)) indi-
cates the arrival rate of target neighbor y given its source node
x , time t and history Hx (t ). Loosely speaking, under the tempo-
ral network scenario, λy |x (t ) can be viewed as the possibility of y
being connected to x at t , which can be exploited to recommend
the future neighbors of the node. Therefore, we design a temporal
recommendation task on DBLP co-author network.

We first extract a co-author network from DBLP data in the time
interval [t ′, t ), and fit each model to that network. Then, given an
author, we can apply the fitted model to predict his or her top-k
possible co-authors at time t . Since baseline methods purely learn
node embeddings, we take the inner product of two researchers’
embeddings as the ranking score. While in our method, we directly
apply the λy |x (t ) as the ranking score for researcher x andy. Specif-
ically, we set t to be the year of 2017, and set t ′ to vary from the year
of 2012 to 2016, i.e., the time span of the training set varies from 1 to
5. We apply the Precision@k and Recall@k as evaluation measures.
Besides, to make the results under different time spans more compa-
rable, we only recommend co-authors to the researchers that occur
in every single year from 2012 to 2017, and the recommendation
results are displayed in Figure 2, where k = 5, 10.

From the results we can see HTNE-a consistently outperforms
all the baseline methods. As shown in Figure 2, the performance of
DeepWalk decreases rapidly with the increasing of time span, and
becomes the worst when the time span is larger than 3. Though
the performance of node2vec decreases slowly, the performances
remain at a worse level. In most cases, LINE performs the second
best. However, the Precision@10 and Recall@10 of LINE decrease
more rapidly than HTNE-a, which indicates that the modeling of
neighborhood formation helps HTNE-a less influenced by out-of-
date temporal patterns. The trend of ComE is very similar to that of
HTNE-a, which indicates that the higher order network structure,
i.e., community structure, can prevent ComE from being severely
influenced by out-of-date co-author patterns. Nevertheless, the
performance of ComE is less competitive against our proposed
HTNE-a. As witnessed in Figure 2, we can see that when the time
span increases, the performances of all the methods decrease, which
is indeed counterfactual at first glance. Because in most cases, a
larger time span with more training data should generally provide
a better performance; while the experimental results prove to be
on the contrary, but this result exactly confirms the toy example
described in Section 1 that the co-authorship of a researcher may
evolve with time, such that recent data is more meaningful for
recommendation.

5.3 Network Visualization
Network visualization is an effective approach to qualitatively eval-
uate node embeddings learned by different methods. Here, we em-
ploy the t-SNE method [24] to project embeddings of researchers
to a 2-dimensional space on the DBLP data. Those researchers are
sampled from three different research areas namely data mining,
computer vision and computer networks. For each area, we ran-
domly choose 500 researchers.
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Table 4: Node classification results on DBLP.

Metric Method 10% 20% 30% 40% 50% 60% 70% 80% 90%

Macro-F1

DeepWalk 0.6345 0.6553 0.6635 0.6681 0.6698 0.6721 0.6734 0.6725 0.6745
node2vec 0.6332 0.6511 0.6589 0.6631 0.6655 0.6667 0.6670 0.6639 0.6660
LINE 0.6163 0.6350 0.6415 0.6455 0.6474 0.6489 0.6498 0.6466 0.6490
ComE 0.6508 0.6632 0.6680 0.6718 0.6753 0.6764 0.6794 0.6769 0.6791
HTNE 0.6235 0.6409 0.6490 0.6526 0.6564 0.6592 0.6596 0.6570 0.6608
HTNE-a 0.6528 0.6656 0.6729 0.6768 0.6799 0.6824 0.6854 0.6836 0.6844

Micro-F1

DeepWalk 0.6435 0.6604 0.6662 0.6690 0.6700 0.6711 0.6711 0.6709 0.6719
node2vec 0.6492 0.6626 0.6688 0.6717 0.6736 0.6742 0.6742 0.6730 0.6735
LINE 0.6229 0.6371 0.6433 0.6455 0.6476 0.6484 0.6487 0.6470 0.6463
ComE 0.6608 0.6723 0.6758 0.6782 0.6806 0.6810 0.6816 0.6801 0.6816
HTNE 0.6620 0.6693 0.6737 0.6752 0.6778 0.6797 0.6793 0.6777 0.6784
HTNE-a 0.6706 0.6789 0.6834 0.6853 0.6869 0.6881 0.6883 0.6879 0.6866

Table 5: Node classification results on Yelp.

Metric Method 10% 20% 30% 40% 50% 60% 70% 80% 90%

Macro-F1

DeepWalk 0.3739 0.3776 0.3786 0.3800 0.3791 0.3809 0.3811 0.3807 0.3796
node2vec 0.4086 0.4193 0.4248 0.4271 0.4269 0.4287 0.4282 0.4278 0.4299
LINE 0.4097 0.4161 0.4191 0.4188 0.4188 0.4185 0.4188 0.4188 0.4186
ComE 0.4187 0.4284 0.4358 0.4372 0.4373 0.4375 0.4387 0.4384 0.4401
HTNE 0.3627 0.3803 0.3892 0.3943 0.3967 0.3997 0.4006 0.3990 0.3993
HTNE-a 0.4211 0.4348 0.4421 0.4460 0.4485 0.4508 0.4511 0.4507 0.4487

Micro-F1

DeepWalk 0.5361 0.5461 0.5488 0.5505 0.5510 0.5513 0.5516 0.5520 0.5515
node2vec 0.5488 0.5600 0.5641 0.5662 0.5663 0.5670 0.5672 0.5677 0.5704
LINE 0.5456 0.5573 0.5611 0.5628 0.5628 0.5632 0.5641 0.5643 0.5635
ComE 0.5589 0.5672 0.5717 0.5727 0.5730 0.5733 0.5745 0.5749 0.5762
HTNE 0.5569 0.5644 0.5684 0.5708 0.5716 0.5733 0.5741 0.5734 0.5728
HTNE-a 0.5834 0.5901 0.5941 0.5961 0.5974 0.5988 0.5989 0.5983 0.5971

Table 6: Node classification results on Tmall.

Metric Method 10% 20% 30% 40% 50% 60% 70% 80% 90%

Macro-F1

DeepWalk 0.4862 0.4892 0.4913 0.4922 0.4923 0.4927 0.4939 0.4941 0.4940
node2vec 0.5298 0.5348 0.5363 0.5377 0.5368 0.5376 0.5386 0.5391 0.5391
LINE 0.4311 0.4350 0.4364 0.4370 0.4370 0.4369 0.4382 0.4387 0.4384
ComE 0.5373 0.5416 0.5435 0.5442 0.5442 0.5451 0.5465 0.5455 0.5428
HTNE 0.5292 0.5413 0.5476 0.5511 0.5524 0.5539 0.5559 0.5563 0.5563
HTNE-a 0.5373 0.5433 0.5468 0.5479 0.5485 0.5491 0.5496 0.5493 0.5507

Micro-F1

DeepWalk 0.5652 0.5704 0.5721 0.5732 0.5736 0.5742 0.5749 0.5759 0.5758
node2vec 0.5971 0.6025 0.6037 0.6049 0.6046 0.6052 0.6059 0.6068 0.6067
LINE 0.5285 0.5339 0.5358 0.5365 0.5369 0.5370 0.5377 0.5388 0.5388
ComE 0.6059 0.6100 0.6110 0.6117 0.6119 0.6126 0.6136 0.6131 0.6113
HTNE 0.6219 0.6286 0.6314 0.6328 0.6332 0.6339 0.6345 0.6352 0.6343
HTNE-a 0.6194 0.6231 0.6248 0.6251 0.6253 0.6259 0.6259 0.6262 0.6266
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Figure 2: Temporal recommendation results.

We illustrate the scatter plots of the 1500 researchers in Figure 3,
using the color and shape of a node to indicate its research area.
Specifically, we use purple triangle to represent “data Mining”, blue
dot to represent “computer network” and green star to represent
“computer vision”. It’s not hard to find that both LINE, DeepWalk
and node2vec failed to separate all the three areas apart clearly. For
example, as shown in Figure 3a, LINE mixtures the data mining and
computer networks areas. Besides, three areas are mixed together
in the middle of Figure 3a. By modeling the community embedding,
ComE achieves satisfactory visualizing result among baseline meth-
ods, as the three areas are roughly separated apart from each other.
However, there is no clear margin between the areas. Both of our
methods can clearly separate three areas apart, while the one with
attention achieves a larger margin. Above results indicate that by
modeling nodes’ neighborhood formation sequence, our method
has potential to be applied to community-level applications such
as community detection with good performances.

5.4 Parameter Sensitivity
In this subsection, we study an important parameter named history
lengthh, which is designed to truncate the whole history of a source
node at a specific time into a recent sequence with fixed length, for

reducing computation costs. Specifically, as illustrated in Figure 4,
we report the Macro-F1 of HTNE and HTNE-a on DBLP, Yelp and
Tmall, with h varying from 1 to 5.

From the results of HTNE, we can see h affects the Macro-F1
differently on three datasets. For example, in DBLP and Tmall, the
Macro-F1 of HTNE first increases along with h, and then begins
to drop when h > 2. In contrast, the Macro-F1 of HTNE starts to
drop at the beginning. Moreover, we can also find that the attention
mechanism introduced into HTNE helps our method to be more
robust against different settings of h, as the Macro-F1 of HTNE-a is
stable on Yelp and Tmall, even increases along with h on DBLP.

6 RELATEDWORK
Network embedding, also known as graph embedding or graph
representation learning, aims to find a low-dimensional vector
space that can maximumly preserve the original network structural
information and network properties [4]. Conventional network
embedding works have been developed with general dimension re-
duction techniques, e.g., by constructing and embedding the affinity
graph into a low dimensional space [3, 13, 21, 23], or by applying
matrix factorization to find the low-dimensional embedding [1].
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(a) LINE (b) DeepWalk (c) node2vec

(d) ComE (e) HTNE (f) HTNE-a

Figure 3: Network visualizations. Color of a node indicates the community of the author. Purple: “data mining”, blue: “com-
puter network”, green: “computer vision”.
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Figure 4: Impacts of history length on DBLP, Yelp and Tmall.

However, works along this line usually suffer from heavy compu-
tational cost or statistical performance drawbacks, making them
neither practical nor effective in large-scale networks.

With the advent of deep learning methods, significant efforts
have been devoted to designing neural network-based representa-
tion learning models. Especially, Mikolov et al. proposed an efficient
neural network framework to learn the distributed representations
of words in natural language [16, 17]. Motivated by this work, Per-
ozzi et al.[20] utilized random walks to generate sequences of nodes
in large-scale network, and then considered the walking path, i.e.,
sequence of nodes, as a sentence of words. Grover and Leskovec [9]

extended the randomwalk procedure to a biased version, which can
strike a balance between local and global properties of a network.
Tang et al. preserved network structures by approximating first-
order and second-order proximities in the embedding space [22].
Moreover, high-order proximities of nodes as well as community
structures have also been taken into consideration in network em-
bedding models [25, 28].

More recently, network embedding have been continuously stud-
ied and received arising attentions from different perspectives. For
instance, rich auxiliary information has been leveraged to facili-
tate the embedding. Pan et al. proposed a tri-party deep neural
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network model, which jointly models node structures, contents
and labels [19]. To address the problem that previous transductive
approaches do not naturally generalize to unseen nodes, Hamilton
et al. developed an inductive framework that incorporates node
feature information for generating node embeddings [10]. Besides,
the strengths of generative adversarial networks [8] have also been
exploited with network embedding [6, 26]. Nevertheless, most ex-
isting network embedding techniques mainly focused on the set-
ting of static networks. To address this issue, Zhu et al. developed
a dynamic network embedding algorithm based on matrix fac-
torization [30]. Yang et al. presented a model with exploring the
evolution patterns of triads, which can preserve structural infor-
mation and get the latent representation vectors for vertices at
different timesteps [29]. The dynamics of these embedding meth-
ods [27, 29, 30] only focus on segmenting the timelines into fixed
time windows, such that the learned node embeddings are only
a representation of the snapshot network. In contrast, our model
takes the full historical neighborhood formation process into ac-
count, providing a more comprehensive representation in view of
the history.

Moreover, our proposed network embedding methods are based
on Hawkes process, which is a traditionally powerful temporal
point process in modeling sequences [11] and has also been studied
extensively to adapt for different scenarios. Particularly, recent stud-
ies on Hawkes process mainly focus on tackling the challenges of
scalability by employing the memoryless property [15] or imposing
the low-rank structure on the infectivity matrix [7, 14], etc.

7 CONCLUSIONS
In this paper, we propose a Hawkes process based Temporal Net-
work embedding (HTNE) method. By formulating the neighbor-
hood formation sequence of a temporal network as Hawkes process,
HTNE achieves the learning of node embedding, and capturing the
influence of the historical neighbors on the current neighbor for-
mation simultaneously. By plugging an attention mechanism in
the influence rate of Hawkes process, HTNE gains ability to de-
cide which parts of the historical neighbor are more influential.
Extensive experiments on three large scale real-world networks
demonstrate the superiority of our methods to leading network em-
bedding methods. Future work includes integrating the attributes
of the temporal edges into our model, and seeking the potential of
our formulation in solving the optimization problem of Hawkes
process with large scale event types.

8 ACKNOWLEDGMENTS
Dr. Junjie Wu’s work was partially supported by the National Nat-
ural Science Foundation of China (NSFC) (71531001, U1636210,
71725002). Dr. Guannan Liu’s work was supported in part by NSFC
(71701007).

REFERENCES
[1] Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski, and

Alexander J. Smola. 2013. Distributed Large-scale Natural Graph Factorization.
In WWW. ACM, New York, NY, USA, 37–48.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473.

[3] Mikhail Belkin and Partha Niyogi. 2001. Laplacian Eigenmaps and Spectral
Techniques for Embedding and Clustering. In NIPS. MIT Press, Cambridge, MA,
USA, 585–591.

[4] HongYun Cai, Vincent W. Zheng, and Kevin Chen-Chuan Chang. 2017. A Com-
prehensive Survey of Graph Embedding: Problems, Techniques and Applications.
CoRR abs/1709.07604 (2017).

[5] Sandro Cavallari, Vincent W. Zheng, Hongyun Cai, Kevin Chen-Chuan Chang,
and Erik Cambria. 2017. Learning Community Embedding with Community
Detection and Node Embedding on Graphs. In CIKM. 377–386.

[6] Quanyu Dai, Qiang Li, Jian Tang, and Dan Wang. 2017. Adversarial Network
Embedding. CoRR abs/1711.07838 (2017).

[7] Nan Du, Yichen Wang, Niao He, and Le Song. 2015. Time-sensitive Recommen-
dation from Recurrent User Activities. In NIPS. 3492–3500.

[8] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative
Adversarial Nets. In NIPS. MIT Press, Cambridge, MA, USA, 2672–2680.

[9] Aditya Grover and Jure Leskovec. 2016. Node2Vec: Scalable Feature Learning for
Networks. In SIGKDD. ACM, New York, NY, USA, 855–864.

[10] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. CoRR abs/1706.02216 (2017).

[11] Alan G Hawkes. 1971. Spectra of some self-exciting and mutually exciting point
processes. Biometrika 58, 1 (1971), 83–90.

[12] Petter Holme and Jari SaramÃďki. 2012. Temporal networks. Physics Reports 519,
3 (2012), 97 – 125.

[13] Joseph B Kruskal and Myron Wish. 1978. Multidimensional Scaling. CRC press.
875–878 pages.

[14] RÃľmi Lemonnier, Kevin Scaman, and Argyris Kalogeratos. 2017. Multivariate
Hawkes Processes for Large-Scale Inference. In AAAI.

[15] Remi Lemonnier and Nicolas Vayatis. 2014. Nonparametric Markovian Learning
of Triggering Kernels for Mutually Exciting and Mutually Inhibiting Multivariate
Hawkes Processes. In Machine Learning and Knowledge Discovery in Databases.
161–176.

[16] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. CoRR abs/1301.3781 (2013).

[17] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed Representations of Words and Phrases and Their Compositionality.
In NIPS. Curran Associates Inc., USA, 3111–3119.

[18] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed Representations of Words and Phrases and their Compositionality.
In NIPS. 3111–3119.

[19] Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Yang Wang. 2016. Tri-
party Deep Network Representation. In IJCAI. AAAI Press, 1895–1901.

[20] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online Learn-
ing of Social Representations. In SIGKDD. ACM, New York, NY, USA, 701–710.

[21] Sam T. Roweis and Lawrence K. Saul. 2000. Nonlinear Dimensionality Reduction
by Locally Linear Embedding. Science 290, 5500 (2000), 2323–2326.

[22] Jian Tang,MengQu,MingzheWang,Ming Zhang, Jun Yan, andQiaozhuMei. 2015.
LINE: Large-scale Information Network Embedding. In WWW. International
World Wide Web Conferences Steering Committee, Republic and Canton of
Geneva, Switzerland, 1067–1077.

[23] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. 2000. A Global
Geometric Framework for Nonlinear Dimensionality Reduction. Science 290,
5500 (2000), 2319–2323.

[24] Laurens van der Maaten and Geoffrey E. Hinton. 2008. Visualizing High-
Dimensional Data Using t-SNE. JMLR 9 (2008), 2579–2605.

[25] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural Deep Network Em-
bedding. In SIGKDD. ACM, New York, NY, USA, 1225–1234.

[26] Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng
Zhang, Xing Xie, and Minyi Guo. 2017. GraphGAN: Graph Representation
Learning with Generative Adversarial Nets. CoRR abs/1711.08267 (2017).

[27] Jingyuan Wang, Fei Gao, Peng Cui, Chao Li, and Zhang Xiong. 2014. Discovering
urban spatio-temporal structure from time-evolving traffic networks. In Proceed-
ings of the 16th Asia-Pacific Web Conference. Springer International Publishing,
93–104.

[28] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. 2017.
Community Preserving Network Embedding.

[29] Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. 2018. Dy-
namic Network Embedding by Modeling Triadic Closure Process. In The AAAI
Conference on Artificial Intelligence.

[30] L. Zhu, D. Guo, J. Yin, G. V. Steeg, and A. Galstyan. 2016. Scalable Temporal
Latent Space Inference for Link Prediction in Dynamic Social Networks. IEEE
Transactions on Knowledge and Data Engineering 28, 10 (Oct 2016), 2765–2777.

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2866 


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Neighborhood Formation Sequence
	2.2 Problem Definition

	3 Methodology
	3.1 Hawkes Process
	3.2 Modeling Neighborhood Formation Sequence via Multivariate Hawkes Process
	3.3 Attention for Sequence Formation
	3.4 Model Optimization

	4 Experimental Setup
	4.1 Data Sets
	4.2 Baseline Methods
	4.3 Parameter Settings
	4.4 Tasks and Evaluation Measures

	5 Experimental Results
	5.1 Evaluation of Node Embeddings
	5.2 Evaluation of the Conditional Intensity Function
	5.3 Network Visualization
	5.4 Parameter Sensitivity

	6 Related Work
	7 Conclusions
	8 Acknowledgments
	References



